Hypothesis Testing Cheat Sheet <u>debonomark@gmail.com</u> 99271274 puremathematics.mt				
Туре	Condition	Hypothesis	Statistic	Notes
Population Mean	σ is known <i>n</i> is large (<i>n</i> >30)	$H_{0}: \mu = \mu_{0} \\ H_{1}: \mu \neq \mu_{0} / \mu > \mu_{0} / \mu < \mu_{0}$	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	Z follows the the standard normal distribution.
	σ is known <i>n</i> is small ($n \leq 30$)	$ \begin{array}{c} H_{0}: \mu = \mu_{0} \\ H_{1}: \mu \neq \mu_{0} / \mu > \mu_{0} / \mu < \mu_{0} \end{array} $	$t = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	t follows the t distribution with $n-1$ d.o.f.
	σ is unknown <i>n</i> is large (<i>n</i> >30)	$H_{0}: \mu = \mu_{0} \\ H_{1}: \mu \neq \mu_{0} / \mu > \mu_{0} / \mu < \mu_{0}$	$Z = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$	Z follows the the standard normal distribution.
	σ is unknown <i>n</i> is small ($n \leq 30$)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$	t follows the t distribution with $n-1$ d.o.f.
Population Proportion		$H_{0}: \pi = \pi_{0}$ $H_{1}: \pi \neq \pi_{0} / \pi > \pi_{0} / \pi < \pi_{0}$	$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$	Z follows the the standard normal distribution.
Difference between Population Proportions		$H_{0}:\pi_{1}-\pi_{2}=0$ $H_{1}:\pi_{1}-\pi_{2}\neq0 / \pi_{1}-\pi_{2}>0 / \pi_{1}-\pi_{2}<0$	$Z = \frac{p_1 - p_2 - (\pi_1 - \pi_2)}{\sqrt{P(1 - P)(\frac{1}{n_1} + \frac{1}{n_2})}}$	<i>Z</i> follows the the standard normal distribution. $P = \frac{x_1 + x_2}{n_1 + n_2}$ where x_1 , x_2 is the number of subjects in group 1, 2 resp. that have the characteristic
Difference between Population Means	σ_1, σ_2 are known	$ \begin{array}{c} H_{0}:\mu_{1}-\mu_{2}=\mu_{0} \\ H_{1}:\mu_{1}-\mu_{2}\neq\mu_{0} \ / \ \mu_{1}-\mu_{2}>\mu_{0} \ / \ \mu_{1}-\mu_{2}<\mu_{0} \end{array} $	$Z = \frac{\bar{x_1} - \bar{x_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Z follows the the standard normal distribution.
	σ_1, σ_2 are unknown σ_1, σ_2 are unequal n_1, n_2 are large	$H_{0}: \mu_{1} - \mu_{2} = \mu_{0}$ $H_{1}: \mu_{1} - \mu_{2} \neq \mu_{0} / \mu_{1} - \mu_{2} > \mu_{0} / \mu_{1} - \mu_{2} < \mu_{0}$	$Z = \frac{\bar{x_1} - \bar{x_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Z follows the the standard normal distribution.
	$egin{aligned} & \sigma_1, \sigma_2 & ext{are unknown} \ & \sigma_1, \sigma_2 & ext{are equal} \end{aligned}$	$H_{0}: \mu_{1} - \mu_{2} = \mu_{0}$ $H_{1}: \mu_{1} - \mu_{2} \neq \mu_{0} / \mu_{1} - \mu_{2} > \mu_{0} / \mu_{1} - \mu_{2} < \mu_{0}$	$t = \frac{\bar{x_1} - \bar{x_2} - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$	t follows the t distribution with $n_1 + n_2 - 2$ d.o.f.
Population Variance		$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$	χ^2 follows the χ^2 distribution with $n-1$ d.o.f.
Difference between Population Variances		$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$F = \frac{s_1^2}{s_2^2}$	F follows the F distribution with $n_1 - 1$ and $n_2 - 1$ d.o.f.